Positive Solutions for Multiparameter Semipositone Discrete Boundary Value Problems via Variational Method
نویسندگان
چکیده
منابع مشابه
Positive Solutions for Multiparameter Semipositone Discrete Boundary Value Problems via Variational Method
متن کامل
Positive Solutions for Second-Order Singular Semipositone Boundary Value Problems
which arises in many different areas of applied mathematics and physics. Singular problems of this type that the nonlinearity g may change sign are referred to as singular semipositone problems in the literature. Motivated by BVP (1.1), this paper presents the existence results of the following second-order singular semipositone boundary value problem: { u ′′ + f(t, u) + g(t, u) = 0, 0 < t < 1,...
متن کاملPositive Solutions To Nonlinear Semipositone Boundary Value Problems
In this paper, we investigate the following third-order three-point semipositone boundary value problems: ( ) ( , ) 0, (0,1); (0) ( ) (1) 0, u t f t u t
متن کاملPositive Symmetric Solutions of Singular Semipositone Boundary Value Problems
Using the method of upper and lower solutions, we prove that the singular boundary value problem, −u = f(u) u in (0, 1), u(0) = 0 = u(1) , has a positive solution when 0 < α < 1 and f : R → R is an appropriate nonlinearity that is bounded below; in particular, we allow f to satisfy the semipositone condition f(0) < 0. The main difficulty of this approach is obtaining a positive subsolution, whi...
متن کاملPositive Solutions for a Class of Semipositone Discrete Boundary Value Problems with Two Parameters
In this paper, the existence, multiplicity and noexistence of positive solutions for a class of semipositone discrete boundary value problems with two parameters is studied by applying nonsmooth critical point theory and sub-super solutions method. Keywords—Discrete boundary value problems, nonsmooth critical point theory, positive solutions, semipositone, sub-super solutions method
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2008
ISSN: 1687-1839,1687-1847
DOI: 10.1155/2008/840458